
phylin with resistance

Pedro Tarroso

Guillermo Velo-Antón

Sílvia B. Carvalho

November 1, 2024

1 Preamble

In this tutorial we will cover the interpolation of lineage probability with re-
sistance calculation. Although the tutorial focus in resitance distances, as you
will see, the method is not limited to this distances. You can use the most
appropriate distance metric explaining the spatial relations. The example data
is borrowed from Tarroso et al. (2018) and the tutorial will cover partially the
methods described there. We want to mantain a simple guide that is easy to
follow and dedicated to phylin but some extra packages will be needed to fol-
low the guide. Please, make sure you have the package gdistance, needed for
resistance distance calculations, installed in your R environment.

To install phylin please check the step-by-step tutorial vignette. You will
�nd instructions on how to use phylin including its basic usage, variogram
building, model �tting and spatial interpolation of lineage probability.

2 Example data

In this tutorial we will use a simulated environment and genetic distances that
are available with the phylin package under the name simulations.

The example data includes three data sets:

� simul.env � A data frame with the coordinates of the grid centroids (1849
cells) and the values of two simulated environmental surfaces for each grid
cell.

� simul.sample � A table of 200 samples randomly chosen from the simulated
presence, with coordinates and lineage classi�cation.

� simul.gen.dist � A genetic distance matrix for the 200 samples.

See the original publication (Tarroso et al., 2018) for details on how the
simulations were built. The data can be attached to your R session:

> library(phylin)

> data(simulations)

The grid with the �rst environmental surface values found in simul.env and
the samples with di�erent colors per lineage can be plotted with:

1

> size <- (simul.env$env.sur - min(simul.env$env.sur)) / 10

> grid.full <- simul.env[,1:2]

> plot(grid.full, cex = size)

> points(simul.sample[,1:2], col=simul.sample$lineage, pch=16)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y

Notice that there are no samples in the edges. Later, when calculating
resistance distances, we need to compute a transition matrix. In order to avoid
edge e�ects in the calculation, the grid has an extra line of cells in the edges1.
The �nal interpolation will only occur in the smaller grid without the edges.
In this step we will remove the edge pixels and prepare a grid for the later
interpolations. In this case, the grid with edges is within the interval -1.05 to
1.05, in both axes. So, to remove those cells we have only to retain coordinates
X and Y that are smaller than 1.05 in absolute values.

> grid <- grid.full[abs(grid.full$x) < 1.05 & abs(grid.full$y) < 1.05,]

The simulated genetic distance can be used to build a tree with UPGMA
method to show how are the four lineages organized:

> plot(hclust(simul.gen.dist, method="average"), labels=FALSE)

> abline(h = 1.25, col='red', lty=2)

1With real data, the study area is usually larger than the extent of the sample points,
and, thus, this is not a common problem. However, being sure that you have a larger area is
important in resistance distance calculation, not only to avoid edge e�ects in the calculation
but to increase the probability of �nding lower resistance paths that circumvent high resistance
areas.

2

0.
2

0.
6

1.
0

1.
4

Cluster Dendrogram

hclust (*, "average")
simul.gen.dist

H
ei

gh
t

3 Distance calculation

In this section we will build two distance matrices. One is the typical geograph-
ical distance matrix based on euclidean distances between coordinates. The
other is a resistance distance matrix based on the friction that landscape o�ers
to the movement of individuals.

3.1 Geographical distances

This matrix is generated from the coordinates of the samples:

> geo.dist <- dist(simul.sample[,1:2])

The dist function from R will calculate the euclidean distances based on
the coordinates of the samples. On real data sets you should be careful about
the projection system used. These distances are not true geographical distances
when using real data as they do not take into consideration the curvature of
the Earth. For small study areas, the curvature might be negligible and the
euclidean distance are a good approximation of the geographical distances.2.

3.2 Resistance distances

This matrix is more di�cult to calculate as it needs other package and multi-
ple steps. In this tutorial we are using resistance distance based on gdistance

package. You can use any other type of distance (e.g. least-cost path) or a
package/software of your choice. For instance, resistance distances were popu-
larized in the landscape genetics community by the CircuitScape software (Shah
and McRae, 2008) and it is possible to use within R environment (e.g Peter-
man, 2018). Although you can use external software, it is much easier if it is
integrated with R, particularly for the later interpolation process.

2For example, check package geosphere for distance calculations on a spheroid.

3

The �rst step is to generate a conductance surface that will describe the per-
meability of the landscape to the species movement. Although we will generally
use the term resistance distance, we will be using conductance to derive those
distances. In fact, conductance is the reciprocal of resistance: R = 1

C where R
is resistance and C is conductance.

The conductance we will be creating is based on the �rst environmental sur-
face in the simul.env data. Similarly to Tarroso et al. (2018), we apply a logistic
function to the data to convert the environmental values to a conductance value
in the range from zero to one with the formula

C =
k

1 + e−b(x−m)

where x is the value of the �rst environmental surface, k is the upper asymptote
set to 1, b is the curvature parameter set to 1, and m is the in�ection point set
to 5. This translates the environmental surface values to conductance on the
range [0, 1]. See Tarroso et al. (2018) for more details on the methods and on
�nding the correct parameters with real data.

> conductance <- 1/(1+exp(-1*(simul.env$env.sur-5)))

> plot(simul.env$env.sur, conductance, cex=0.25,

+ xlab="Environmental surface", ylab = "Conductance")

−2 0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Environmental surface

C
on

du
ct

an
ce

This virtual species disperses more easily through higher values of the envi-
ronmental surface (higher conductance / lower resistance).

To calculate the resistance matrix we will need to convert the conductance to
raster. We will use a function from the raster package. However, as gdistance
depends on raster, this package is already loaded in our R session.

> library(gdistance)

> conductance <- rasterFromXYZ(data.frame(grid.full, conductance))

> plot(conductance)

4

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0.2

0.4

0.6

0.8

The transition matrix represents the connectivity between grid locations.
The matrix is calculated based on the conductance raster using 8 neighbors,
assuming that each pixel is connected to all its nearest orthogonal and diagonal
nearest neighbors. The transition matrix has to be geo-corrected in order to
correctly represent the connectivity. See van Etten (2017) for more details on
the generation of resistance distances with the gdistance package.

> tr <- transition(conductance, mean, 8)

> tr <- geoCorrection(tr, type="r")

With the transition matrix we can �nally calculate the resistance distances
between the samples:

> res.dist <- commuteDistance(tr, as.matrix(simul.sample[,1:2]))

The commute distances are equivalent to resistance distance from circuit
theory (van Etten, 2017).

Now we have two distance matrices, the geo.dist for geographical distances
and res.dist for resistance-based distances. These two matrices will be used
in the interpolation in order to build the lineages' occurrence probability maps.

4 Building the variograms

Building a variogram and �tting a theoretical model to it is a necessary step for
mapping the lineage occurrence probability. We will build two variograms: one
for the geographical distances and the other for the resistance-based distances.
Our genetic distances are in the matrix simul.gen.dist.

For the geographical distances we use a value of 0.01 for the distance class
interval (lag).

> gv.geo <- gen.variogram(geo.dist, simul.gen.dist, lag=0.01)

> plot(gv.geo)

5

0.0 0.5 1.0 1.5 2.0 2.5

Distance

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

S
em

iv
ar

ia
nc

e

n size

1
50
100
150
200
250
300

Semi−Variogram

A model with a range value of 2 and a small nugget of 0.3 seems to �t the
empirical variogram. We can add it with the following commands:

> gv.geo <- gv.model(gv.geo, range=2, nugget=0.3)

> plot(gv.geo)

0.0 0.5 1.0 1.5 2.0 2.5

Distance

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

S
em

iv
ar

ia
nc

e

n size

1
50
100
150
200
250
300

Semi−Variogram
 Model: spherical Sill: 1.303 Range: 2 Nugget: 0.3

The resistance distance are used to build the second variogram. Since resis-
tance distances are of much larger magnitude, the lag value is also larger.

> gv.res <- gen.variogram(res.dist, simul.gen.dist, lag=120)

> plot(gv.res)

6

0 5000 10000 15000 20000

Distance

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

S
em

iv
ar

ia
nc

e

n size

1
50
100
150
200
250
300

Semi−Variogram

We can also �t a model to the variogram after visual inspection. This time
we assume a zero nugget and a range value of 190.

> gv.res <- gv.model(gv.res, range=19000)

> plot(gv.res)

0 5000 10000 15000 20000

Distance

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

S
em

iv
ar

ia
nc

e

n size

1
50
100
150
200
250
300

Semi−Variogram
 Model: spherical Sill: 1.313 Range: 19000 Nugget: 0

The variograms have very di�erent shapes. The resistance distances separate
well the lineages below (1 and 2) and above the barrier (3 and 4), resulting in a
double in�ection point. The model we have �tted to the variogram does not take
this into account for simplicity. The simulated environment has a barrier that
crosses the study area longitudinally and genetic distances are derived directly
from the simulated environment. This forces lineages to be well di�erentiated

7

on each side of the barriers and to have a genetic divergence that has an high
spatial structure. Lineages above and below the barrier are well di�erentiated
genetically and resistance distances are promoting the division by forcing longer
distances across the barrier. Processes as species dispersal, permeability of the
barrier and allowed gene �ow between individuals at both sides of the barrier
would smooth out this e�ect.

We could also assume two di�erent spatial processes occurring at both side
of the barrier. With this assumption we could build a variogram for each spatial
process (see a similar case in Tarroso et al., 2015). In this case we would have
a variogram including lineages 1/2 and another for lineages 3/4 that would be
used later in the spatial interpolation of each lineage. This division would result
in simpler empirical variograms to which �tting a model would be easier.

For simplicity and because the simulations did not intend to model two fully
isolated species, we proceed with a single variogram for resistance distances.

5 Distance functions

The objective of this tutorial is to create a raster representing the probability
of lineage occurrence. For this we have to create a simple function that al-
lows to calculate the appropriate distances (geographical or resistance) for each
interpolation. The krig function needs an external function to calculate dis-
tances needed in the interpolation computation. As default, the function will
assume simple euclidean distances and no external function is required. How-
ever, when using other distances, we have to provide a function that calculates
the appropriate distance between a origin and a destination point.

To illustrate better the interpolation process in this tutorial, we will build
also a simple function to calculate the euclidean distances3. The function has
two mandatory arguments, 'from' and 'to', representing the origin and desti-
nation points and returns a distance matrix with 'from' locations in rows and
'to' locations in columns. We are going to use the dist function from R to do
most of the calculations for us. However we still have to wrap it in a function
accepting a 'from' and 'to' arguments. We are going to use a small trick: we
build a full distance matrix including all points and extract just the portion we
need (the 'from' rows and 'to' columns)4. The tables 'from' and 'to' must have
only two columns representing X and Y coordinates. The function follows a
simple structure:

1. Get the number of 'from' locations.

2. Merge 'from' and 'to' locations to a single matrix with X and Y columns.

3. Compute euclidean distances with dist between merged locations.

4. Subset the matrix to get the rows that are 'from' locations and the columns
that are 'to' locations.

5. Return the distance matrix.

3Note again that this function is not needed as, by default, krig will calculate euclidean
distances.

4This is not e�cient at all because it performs unneeded computations but it is simple.

8

Written in R code:

> my.geo.dist <- function (from, to) {

+ nf <- nrow(from)

+ allcoords <- rbind(from, to)

+ dist <- as.matrix(dist(allcoords))

+ geo.dist <- dist[1:nf, (nf+1):ncol(dist)]

+ return(geo.dist)

+ }

We can try our function with some coordinates. We are using the 3 �rst sam-
ples and the 6 �rst grid coordinates to calculate distance with our my.geo.dist
function:

> # The 'x' and 'y' columns of the first 3 samples

> sp <- simul.sample[1:3, 1:2]

> # The first 6 locations in the grid

> grd <- grid.full[1:6,]

> # Calculate distances from samples to grid

> my.geo.dist(sp, grd)

1 2 3 4 5 6

px274 1.443087 1.394633 1.346291 1.298075 1.250000 1.202082

px1274 1.607016 1.603122 1.600781 1.600000 1.600781 1.603122

px1629 2.500000 2.470324 2.441311 2.412986 2.385372 2.358495

Our function seems to be working correctly. We can now proceed to create
the function that computes resistance distances. The function is slightly more
complex as it needs the 'from' and 'to' arguments but also a transition matrix
as a 'tr' argument. The �rst two arguments are mandatory for the krig func-
tion and other arguments are optional, depending only on the chosen distance
algorithm. As we seen above, the commuteDistance function from gdistance

needs a transition matrix and our function must supply it. We will use the same
function structure as before with few modi�cations:

> my.res.dist <- function (from, to, tr) {

+ nf <- nrow(from)

+ allcoords <- as.matrix(rbind(from, to))

+ dist <- as.matrix(commuteDistance(tr, allcoords))

+ my.dist <- dist[1:nf, (nf+1):ncol(dist)]

+ return(my.dist)

+ }

We can check the output of the created function with the same coordinates
as before:

> # Calculate distances from samples to grid

> my.res.dist(sp, grd, tr)

1 2 3 4 5 6

px274 16103.50 13906.22 13093.21 13021.95 11886.00 11653.83

px1274 26032.10 23842.33 23047.16 23004.95 21906.43 21721.30

px1629 24528.51 22336.91 21537.42 21488.20 20380.71 20184.39

9

Notice again that we must give the transition matrix to the function.
Now we have the functions for the interpolation5. Allowing user de�ned

functions in the interpolation process brings much �exibility to the method.
The interpolation is not limited to euclidean distances neither to resistance
distances. The user can decide which type of distance better suits his system
and apply it.

6 Spatial interpolation

We can proceed with the interpolation of lineage occurrence probability. We
convert the sample lineage data into a vector of 0s and 1s representing the
lineage presence. For the following example, we will be using the lineage 2. The
'neg.weights' set to FALSE allows only positive weights on the computation of
the interpolations, resulting in a interpolation within the original range between
zero and one.

> lin <- as.integer(simul.sample$lineage == 2)

> intpl <- krig(lin, simul.sample[,1:2], grid, gv.geo, my.geo.dist,

+ neg.weights=FALSE, verbose=FALSE)

> grid.image(intpl, grid)

> points(simul.sample[,1:2], pch=lin+1)

0.2 0.4 0.6 0.8 1

−1 −0.5 0 0.5 1

−
1

−
0.

5
0

0.
5

1

Z

x

y

5Writing functions might be di�cult, particularly for someone without a previous program-
ming experience. There are multiple books, resources and tutorials covering the subject. For
example: https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

10

For resistance distances, the process is the similar. We have to use the func-
tion we created before. This function has three arguments: the two mandatory
for krig that are the 'from' and 'to' and the transition matrix 'tr' argument.
We have to pass the transition matrix to our function trough the krig function.

> lin <- as.integer(simul.sample$lineage == 2)

> intpl <- krig(lin, simul.sample[,1:2], grid, gv.res, my.res.dist, tr=tr,

+ neg.weights=FALSE, verbose=FALSE)

> grid.image(intpl, grid)

> points(simul.sample[,1:2], pch=lin+1)

0.2 0.4 0.6 0.8 1

−1 −0.5 0 0.5 1

−
1

−
0.

5
0

0.
5

1

Z

x

y

The barrier e�ect is neglected with the interpolation considering only geo-
graphical distances, resulting in a distribution of the lineage that expands over
the area with high resistance. The only factor shaping the distribution of the
probability of occurrence is the relative position of the samples. However, by
de�nition, the barrier does not have any presence due to the lack of suitability,
and lineages are predicted to expand to the nearest areas to the sampling dis-
tribution. On the other hand, the interpolation with resistance distance limits
the distribution of the lineage with the limit of the barrier. The barrier has
an intermediate value of lineage occurrence due to the lack of samples: all lin-
eages have the same low probability of being present there. Nevertheless, the
lineage distribution area is well di�erentiated with the interpolation values and
it detects a potential passage through the barrier.

11

The process can be automated to produce an interpolation for each lineage
with a loop. We �rst create an empty matrix that will hold all the values
and than attribute to each column the results of each lineage interpolation.
In the following example we use the same loop for geographical and resistance
distances.

> geo <- matrix(NA, nrow(grid), 4)

> res <- matrix(NA, nrow(grid), 4)

> for (l in 1:4) {

+ lin <- as.integer(simul.sample$lineage == l)

+ geo[,l] <- krig(lin, simul.sample[,1:2], grid, gv.geo, my.geo.dist,

+ neg.weights=FALSE, verbose=FALSE)$Z

+ res[,l] <- krig(lin, simul.sample[,1:2], grid, gv.res, my.res.dist, tr=tr,

+ neg.weights=FALSE, verbose=FALSE)$Z

+ }

You can view the results using the grid.image function as before. You can
also easily convert to a raster object using the raster package:

> geo.raster <- rasterFromXYZ(data.frame(grid, geo))

> res.raster <- rasterFromXYZ(data.frame(grid, res))

You can write the raster using the writeRaster function from the raster

package. If you save the raster created it will result in a multi-band raster where
each band is a lineage occurrence.

References

Peterman, W. E. (2018). ResistanceGA: An R package for the optimization
of resistance surfaces using genetic algorithms. Methods in Ecology and

Evolution, (00):1�10.

Shah, V. and McRae, B. (2008). Circuitscape: a tool for landscape ecology.
Proceedings of the 7th Python in Science Conference, pages 62�65.

Tarroso, P., Carvalho, S. B., and Velo-Antón, G. (2018). Phylin v2: improving
the phylogenetic lineage interpolation method including uncertainty and
user-de�ned distance metrics. Submitted.

Tarroso, P., Velo-Antón, G., and Carvalho, S. B. (2015). Phylin: an R Package
for Phylogeographic Interpolation. Molecular Ecology Resources, 15:349�
357.

van Etten, J. (2017). R Package gdistance: Distances and Routes on Geograph-
ical Grids. Journal of Statistical Software, 76(13):21.

12

	Preamble
	Example data
	Distance calculation
	Geographical distances
	Resistance distances

	Building the variograms
	Distance functions
	Spatial interpolation

