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1 Installation

You need the R programming environment. If you don't have it installed, please
go tho their homepage, download and install a version compatible with your
operating system.

The phylin package is available trough CRAN. To install and load the pack-
age at the R console, type the following commands:

> install.packages('phylin')

> library(phylin)

If you are using a graphical environment for R, look for package installation
in the user manual. Additionally you might wan tto install additional packages
that might be useful:

� geometry � Useful to calculate Delaunay triangulation for some functions.

� sp or rgdal � To open raster/grids to de�ne interpolation areas.

� ape � To open and manipulate phylogenetic trees

Although these packages (or equivalent) will o�er a great advantage to read
and manipulate phylogenetic and spatial information, we do not cover their use
in this tutorial as phylin does not depend directly on any of them. Please refer
to each package tutorial for additional help.

2 Example data

Phylin includes an comprehensive example using real data from Vipera latastei

in the Iberian Peninsula. Please refer to the original data publication (Velo-
Antón et al., 2012) for details. The examples data sets include:

� d.gen � A matrix of genetic distances calculated using the original phylo-
genetic tree.

� vipers � A table containing the spatial coordinates and lineage classi�ca-
tion for each of the 58 samples available.
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� grid � A table containing grid centroids de�ning the interpolation area
(7955 cells).

The data can be attached to your R session using data command:

> data(d.gen)

> data(vipers)

> data(grid)

Additionally you can plot the data using example command:

> example(d.gen)
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Every function/data in phylin has an example attached that you can check
using this command. The example of the genetic distance matrix will plot a
tree based on the hierarchical clustering with the matrix data. It is advisable
here to use an speci�c package to deal with the phylogenetic trees (e.g. ape) to
maintain the height scale and to easily manipulate the tree. Phylin was built to
not depend in additional packages directly, so we use the hclust function from
R base to build the tree:

> hc <- hclust(as.dist(d.gen))

> plot(hc, hang = -1)

This code1 is used in the example to generate the tree.

1Tip: check the help of each function or dataset in phylin to navigate the examples code.
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The examples of the grid data set will show the interpolation area and the
vipers data set will show the samples locations and lineage classi�cation. Note
that for demonstration purposes we have opted for a interpolation area covering
the full Iberian Peninsula. However, you will probably want to interpolate over
a speci�c area covering the distribution of your species and not extrapolate to
outside that area. This can be done using a grid with the centroids covering the
area of interest. You can build this grid in any GIS software and then import to
R using a package to read spatial data (e.g. rgdal) or build directly in R using
a spatial package or native R functions (e.g. you can create a lit of centroids
using expand.grid command and then �lter those of interest).
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Now we have in our session all data needed to build the genetic surfaces
(lineages occurrence maps and potential contact zones). We will start by build
the variograms and �t models using the genetic distance matrix and sample
locations. Then we proceed with the spatial interpolations for our grid.

3 Variogram

The variogram (commonly shortened from semi-variogram) is a way to describe
the spatial dependence of the data by plotting semi-variance against geographic
distance. By spatial dependence it is understood the statistical dependence
of the samples based on their locations. The variogram will also indicate the
distance from where the samples may be considered independent, i.e., where
there is no spatial autocorrelation. Building a variogram is easy in phylin. We
will use the function gen.variogram with matrices of real distances and genetic
distances. To generate the matrix of real distance we will be using the dist

function from R base functions:

> r.dist <- dist(vipers[,1:2])

We just need the coordinates2 for each sample to build this matrix (columns
1 and 2). Note: you should be sure that the sample order in rows and columns of
both matrices correspond. The variogram is built with the following command:

> gv <- gen.variogram(r.dist, d.gen)

2We are using geographical coordinates on the WGS84 datum through all the tutorial.
Other systems may be more appropriate and easier to interpret (e.g. metric coordinates after
projection)
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Additional arguments to gen.variogram de�ne the lag size and maximum
distances to analyze. Each pair of points will be classi�ed in the same lag if
their distance is within the lag +/- lag tolerance. This is very important so we
can have multiple points to de�ne the semi-variance for each lag. Samples with
long distances are usually less frequent, and the number of points available for
higher lags may be very small. The maximum lag is used in these cases to de�ne
the maximum distance to calculate lags in order to avoid misleadings from small
n.

This function provides a small change of the usual kriging method. Instead
of using sample locations with a continuous value for each sample to interpolate
(e.g. altitude value) and calculate the pairwise di�erences, we use the genetic
distance matrix as the pairwise di�erence due to the lack of continuous value at
each sample point. This allows to avoid the use of midpoints between samples
to project the genetic distance in space.

Phylin allows to generate a variogram from the posterior probability distri-
bution of trees instead of a single consensus tree (since v1.1.0). In this case, the
variogram will show the median and its 95% interval calculated with bootstraps.
A small extra code is needed to generate such variogram. A list of distances
matrices must be built from the multiple tree instead of a single matrix. The
example data set included with phylin does not include multiple genetic distance
matrices, so the following code is just illustrative of the process of generating
cophenetic distances matrices from phylogenetic trees.

> # Assuming that the names in the tree do not need processing

> # to correspond to names in the real distance matrix.

> d.gen.multi <- lapply(trees, cophenetic)

We can now plot the variogram and check the structure.

> plot(gv)

5



0 2 4 6 8 10

Distance

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

S
em

iv
ar

ia
nc

e

n size

1
50
100
150
200

Semi−Variogram

The resulting plot shows the spatial structure of our data by means of the
semi-variance. The circle size is relative to the n size for each lag. The long
distance lags have smaller n however the n > 13 for all lags here. You can check
n for each lag and other proprieties by inspecting the gv object created above:

> gv$n

[1] 26 65 123 115 100 90 141 138 172 156 112 74 76 56 55 52 45 24 16

[20] 14

The resulting vector is the n for each lag created. You can print the vari-
ogram details

> gv

Variogram with a single genetic distance matrix.

observations and 20 distance classes (from 0.01 to 11.74 )

0.59 lag size with 0.3 tolerance.

No model fitted

but you should also check the summary of the variogram:

> summary(gv)

Summary for gv

Number of samples:
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Variogram parameters

lag: 0.595

lag tolerance: 0.297

maximum distance: 11.739

lags with data: 20

semi-variance summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0002277 0.0013822 0.0033705 0.0027743 0.0041932 0.0041932

No model found.

Now it is time to �t a model to the variogram. Common models �tted to a
variogram are the spherical, gaussian, exponential and linear. With phylin we
can use the function gv.model to �t a model to the previously built variogram.
We will try with the defaults �rst (spherical model) and it will estimate the best
model by non-linear least square estimation:

> gv <- gv.model(gv)

> plot(gv)
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The model is quite good for this data. However, �tting a model to a vari-
ogram may be a cumbersome task, and visual inspection after trying modifying
the model parameters might yield a model better describing the spatial struc-
ture. We will tweak the parameters and manually de�ne a range value and then
check a linear model as an example:

> gv2 <- gv.model(gv, range=8)

> gv.linear <- gv.model(gv, model='linear', range=8)

> layout(matrix(1:2, 1, 2))

> plot(gv2)

> plot(gv.linear)
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You should try other models to change the remaining parameters (sill and
nugget) to get a good �t. We will continue with the �rst built model and
attributed to gv object. You can check the variogram and model details by
simply printing the gv object:

> gv

Variogram with a single genetic distance matrix.

observations and 20 distance classes (from 0.01 to 11.74 )

0.59 lag size with 0.3 tolerance.

A spherical model is fitted with 0.00426559266596081 sill, 10.3211400885226 range and 0 nugget.

As you can see, in the plot title the sill is rounded to the fourth decimal
place. In the details you can check the real sill value. You should also check the
summary table:

> summary(gv)

Summary for gv

Number of samples:

Variogram parameters
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lag: 0.595

lag tolerance: 0.297

maximum distance: 11.739

lags with data: 20

semi-variance summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0002277 0.0013822 0.0033705 0.0027743 0.0041932 0.0041932

Semivariogram with NA model (R squared = 0.9804)

Model parameters:

sill: 0.004

range: 10.321

nugget: 0

The R2 can be a good hint while �tting a model. However, non-linear least
squares will give an optimal R2 for a model but you may still want to change
the parameters and model type.

The variogram will return several parameters no analyze biological patterns.
For instance, an isolation-by-distance pattern implies that the semi-variance
stabilizes at a certain value (sill parameter) after a distance given by the range
parameter, de�ning an area where the genetic similarity based on the genetic
distances decreases rapidly. This assumes a stationarity of the process, meaning
that the mean and variance are stable and only the geographical distance will
a�ect the autocorrelation structure (for more details see Wagner et al., 2005,
including biological processes that may a�ect stationarity assumptions).

4 Spatial interpolation of lineage occurrence

The spatial interpolation in phylin is achieved by kriging. This method uses the
model in the variogram to include a description of the spatial dependence of the
data to predict values to other locations where we don't have samples available,
instead of relying only in the distance between sample and locations to inter-
polate (e.g. inverse distance weighting). The application of this interpolation
method is usually done with continuous data at the sample locations. However,
since we used the genetic distance matrix, we only have pairwise values and not
a value for each sample. To circumvent this problem we use the tree to clas-
sify the samples to either 1 or 0, which means that the sample belongs or not,
respectively, to a particular cluster/lineage. Because in our data we have three
lineages, we will build three maps depicting the potential area of occurrence
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of each lineage. The vipers data has already de�ned the lineage classi�cation
and we extract the binary classi�cation for the �rst lineage and apply the krig
function:

> lin <- as.integer(vipers$lin == 1)

> int.krig <- krig(lin, vipers[,1:2], grid, gv, neg.weights = FALSE,

+ verbose=FALSE)

For the krig function we have used the lineage classi�cation, the sample
coordinates in column 1 and 2 from vipers table, the grid table de�ning the
area to interpolate and or variogram gv with the model built. Note that we
cancel the verbosity of the function which defaults to TRUE and displays a
percentage of the interpolation process. The neg.weights argument, when set
to FALSE, all negative weights in the interpolation process are corrected and
interpolation will be in the range [0, 1]. This can be also achieved with clamp

argument, but it is preferable to not allow the negative weights. The object
built, int.krig has two columns: one with the predicted values (Z) and the
other with standard deviation of the interpolation (sd).

Phylin has also plotting functions to ease the plotting of interpolation sur-
faces. With some experience with R plotting functions, you might want to use
the information directly that you can assess in the int.krig1 in conjunction
with the grid centroids.

> grid.image(int.krig, grid, main='Kriging with genetic distances',

+ xlab='Longitude', ylab='Latitude',

+ sclab='Lineage interpolation')

> points(vipers[,1:2], pch=lin+1)
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We can also see the standard deviation of the interpolation by de�ning the
optional argument ic:

> grid.image(int.krig, grid, ic='sd', main='Kriging with genetic distances',

+ xlab='Longitude', ylab='Latitude',

+ sclab='Standard Deviation')
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The standard deviation increases between sampled locations, thus, corre-
lating with the distance to samples. A map that may be useful is the binary
occurrence of a lineage. For this purpose we will use a threshold of 0.95, which
will classify the area of probability higher that this value as one.

> lin.krig <- as.integer(int.krig$Z>0.95)

> grid.image(lin.krig, grid, main='Kriging with genetic distances',

+ xlab='Longitude', ylab='Latitude',

+ sclab='Lineage presence')

> points(vipers[,1:2], pch=lin+1)
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5 Potential contact zones

To derive a map of potential contact zones we have to sample the phylogenetic
tree at di�erent lengths. We will use three di�erent sampling schemes here: 1)
sampling with a constant length, 2) sampling at each node position and 3) a
single threshold. We will create two vectors holding the lenghts/thresholds for
tree sampling for our hc tree:

> #regular sampling

> regSampling <- seq(0.01, 0.08, 0.005)

> #node sampling (avoiding the tips)

> nodeSampling <- hc$height[hc$height > 0.01 & hc$height < max(hc$height)]

> #single threshold

> singleSampling <- 0.06

> length(regSampling)

[1] 15

> length(nodeSampling)

[1] 15

> length(singleSampling)

[1] 1
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The lowest tree length value used here is 0.01 for both �rst and second
sampling schemes. This avoids computation of maps between samples or very
recent splits. We can check the position of the sampling in the tree. We are
using the R base functions for plotting the tree and thresholds but you could
use other package that manipulates phylogenetic trees.

> layout(matrix(1:3, 1, 3))

> plot(hc, hang = -1, labels = FALSE, main= 'Regular sampling')

> abline (h=regSampling, col='red', lty=2)

> plot(hc, hang = -1, labels = FALSE, main='Node sampling')

> abline (h=nodeSampling, col='red', lty=2)

> plot(hc, hang = -1, labels = FALSE, main='Single threshold')

> abline (h=singleSampling, col='red', lty=2)
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The red lines indicate the chosen thresholds. As expected, the node sampling
represents each split, giving few importance to the brancgh structure. On the
other hand, regular sampling of the tree will provide more information on the
structure, i.e., the most divergent splits showing a structure of fewer clusters are
sampled more times. This will in�ate the probabilities at older contact zones,
whereas the �rst will be more uniform. The single threshold used is dividing the
three major lineages found. This gives the user the �exibility to use either these
suggested schemes or any other, as long as it is possible a binary classi�cation
of the samples.

To build the maps of potential contact zones we have to build maps of
lineages/clusters for each tree threshold. The lineages maps in each threshold
are then convert to the complement (the probability of not belonging to the
lineage or belonging to all other lineages) and multiplied. These process allows to
eliminate the presence of each lineage successively, resulting in a map of potential
contact zones for the threshold. The resulting maps from all thresholds are
averaged to generate a �nal map of the potential contact zones. The following
code is for the regular sampling:

> contact = rep(0, nrow(grid)) # Sums all probabilities

> for (h in regSampling) {
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+ lins <- cutree(hc, h=h)

+ print(paste("height =", h, ":", max(lins), "lineages")) #keep track

+ ct = rep(1, nrow(grid)) # Product of individual cluster/lineage map

+ for (i in unique(lins)) {

+ lin <- as.integer(lins == i)

+ krg <- krig(lin, vipers[,1:2], grid, gv, neg.weights = FALSE, verbose=FALSE)

+

+ # Product of the complement of the cluster ocurrence probability.

+ ct <- ct * (1 - krg$Z)

+ }

+ contact = contact + ct

+ }

> # Recycle krg with averaged potential contact zones

> krg$Z <- contact / length(regSampling)

This code may take a while to run. For the node sampling, replace the
regSampling with nodeSampling in the previous code. For single threshold you
should replace with singleSampling. The krg object holds the information of
potential contact zones. We can use grid.image again to see the map.

> grid.image(krg, grid, main='Potential contact zones / Regular sampling',

+ xlab='Longitude', ylab='Latitude',

+ sclab='Prob. of multiple lineage occurrence')

> points(vipers[,1:2], cex=0.5)
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a similar map for node sampling:
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and a simple map for the single threshold.
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As expected the pattern of the maps is very similar. Nevertheless, the divi-
sion of older and more divergent lineages is shown more clearly with the regular
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sampling, with higher probabilities. This map is, thus, related to the genetic
divergence, with higher probability indicating potential higher divergence. How-
ever, the width of the potential contact zones may change with extra sampling
to better de�ne this area.

6 Other methods in phylin

Phylin has functions to build maps based on midpoints and inverse distance
weighting (e.g. Miller et al., 2006; Vandergast et al., 2008). To represent the
pairwise data of the genetic distance matrix we generate midpoints between
neighbors. To correctly generate these midpoints we need the geometry package
installed. It o�ers methods for Delauney triangulation that are used by phylin
if the package is available. To generate the interpolation of the residuals from
a linear regression we attribute the residuals to the respective midpoints:

> mp <- midpoints(vipers[,1:2])

> d.real <- as.matrix(r.dist) #real distances to matrix

> fit <- lm(as.vector(d.gen) ~ as.vector(d.real))

> resid <- matrix(fit$residuals, nrow(vipers), nrow(vipers))

> dimnames(resid) <- dimnames(d.gen)

> mp$z <- extract.val(resid, mp[,1:2])

> int <- idw(mp[,5], mp[,3:4], grid)

Note: we are using Ordinary Linear Regression availabe with R base installa-
tion instead of the Reduced Major Axis Regression as suggested by Vandergast
et al. (2008). We can use grid.image to see the results and add the triangula-
tion and midpoints:

> grid.image(int, grid, main='IDW interpolation',

+ xlab='Longitude', ylab='Latitude',

+ sclab="Residuals of genetic vs. real distances")

> # plot samples connecting lines

> for (i in 1:nrow(mp)) {

+ pair <- as.character(unlist(mp[i,1:2]))

+ x <- c(vipers[pair[1],1], vipers[pair[2],1])

+ y <- c(vipers[pair[1],2], vipers[pair[2],2])

+ lines(x, y, lty=2)

+ }

> points(vipers[,1:2], pch=16) # plot samples points in black

> points(mp[,3:4], pch=16, col='gray') # plot midpoints in gray
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